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Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying
sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide
later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the
formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with
eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the
momentary motion “evidence.” By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual
decisions, we tested whether this LIP activity reflected a persistent, integrated “memory” of these brief sensory events. We found that the
responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys’ choices and
the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time
integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well
as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of
evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are
dissociated from immediate sensory inputs or motor outputs.

Key words: lateral intraparietal area; LIP; reaction time; visual motion; electrophysiology; vision

Introduction
Decisions often require the accumulation of evidence over time,
and subsequent actions are often executed long after the relevant
evidence has arrived at the senses. The physiological study of
decision-making has begun to identify the neural mechanisms
underlying the interpretation of sensory evidence, the mainte-
nance of evidence in working memory, and the subsequent plan-
ning of appropriate motor actions (Schall, 2001, 2005; Platt,
2002; Glimcher, 2003; Romo and Salinas, 2003). To perform
these operations that bridge sensory inputs with motor outputs,
the brain needs to be able to integrate evidence over time, con-
verting fleeting sensory events into persistent evidence that can be
held and evaluated over longer timescales. The experiments de-
scribed in this paper attempt to test whether neurons in the lateral
intraparietal area (LIP) of the rhesus monkey brain reflect this
temporal integration.

The hypothesis that LIP is involved in temporal integration
comes from experiments in which monkeys perform a two-
alternative direction-discrimination task (Shadlen and New-
some, 2001; Roitman and Shadlen, 2002). In this task, monkeys
decide the net direction of motion of a dynamic random dot
stimulus and indicate their decision by making an eye movement
to a corresponding choice target. Previous work has shown that
the responses of middle temporal (MT) neurons reflect the direc-
tion and strength of the motion signal (Britten et al., 1993; Britten
and Newsome, 1998). As the monkeys view and decide the direc-
tion of random dot motion, LIP responses increase or decrease
gradually over time, depending on whether the monkey chooses a
choice target within or outside of the response field (RF) of the
LIP neuron under study. LIP activity thus appears to reflect the
evolution of the monkey’s decision in favor of one alternative
over another. These gradual increases and decreases in spike rate
are consistent with the proposition that LIP activity reflects the
temporal integration (or accumulation over time) of the
direction-selective sensory evidence represented in area MT (Ma-
zurek et al., 2003).

To test the hypothesis that LIP activity reflects temporal inte-
gration of sensory signals in this task, we introduced brief direc-
tional “motion pulses” into the visual motion display. We rea-
soned that, if LIP activity truly reflects the time integral of visual
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motion signals, the effects of these brief sensory events should
exert persistent changes in the spike rates of LIP neurons. Con-
versely, if LIP activity does not reflect substantial time integra-
tion, brief sensory events should exert only fleeting effects in the
spike rates of LIP neurons. Consistent with the temporal integra-
tion hypothesis, we observed that 100-ms-long motion pulses
affected decision-related activity in LIP for several hundreds of
milliseconds, corresponding to the timescale used by the mon-
keys to form decisions in the task. We also observed a similar
degree of temporal integration in the psychophysical choices.
Our analyses suggest that LIP activity and psychophysical behav-
ior may reflect near-perfect temporal integration of motion sig-
nals until a criterion amount of evidence in favor of one decision
has been accumulated.

Materials and Methods
Methods for recording spikes and for monitoring eye position were de-
scribed previously by Roitman and Shadlen (2002). Briefly, two male
rhesus monkeys (Macaca mulatta; monkey I, �9.2 kg; monkey S, �8.5
kg) were implanted with a head-holding device, a recording cylinder
(Crist Instruments, Damascus, MD) for transdural introduction of glass-
coated tungsten electrodes (�1 M� at 1 kHz; Alpha Omega, Nazareth
Elite, Israel), and a scleral eye coil for monitoring eye position (C-N-C
Engineering, Seattle, WA). All surgical and animal care methods con-
formed to the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the University of Washington
Animal Care Committee.

Identification and selection of neurons. We recorded from 54 well iso-
lated LIP neurons in two monkeys (35 from monkey I, and 19 from
monkey S). Neurons were selected according to anatomical and physio-
logical criteria. Comparison of a postoperative magnetic resonance im-
aging (Fig. 1) to a standard atlas confirmed the location of the recording
cylinder over the lateral bank of the intraparietal sulcus, using CARET
software (Van Essen et al., 2001). Most neurons we recorded from were
encountered 3–7 mm below the pia mater along a trajectory that ran
approximately parallel to the intraparietal sulcus and most likely corre-
sponded to the posterior two-thirds of ventral LIP (Lewis and Van Essen,
2000); a smaller number of neurons were encountered at shallower
depths and most likely corresponded to dorsal LIP, although they had
indistinguishable physiological properties based on our on-line
assessments.

We used a memory-guided saccade task to select neurons that showed
spatially selective, persistent changes in spike rate while waiting to exe-
cute an eye movement (Hikosaka and Wurtz, 1983; Gnadt and Andersen,

1988). The monkey fixated a central point while a target appeared briefly
(100 ms) in the periphery. To receive a reward, the monkey had to main-
tain gaze at the fixation point until its extinction (500 –1500 ms) and then
make a saccade to within 2–5° of the location of the remembered target
(the size of the acceptable “window” was adjusted online to correspond
to the eccentricity of the target). By varying the location of the target from
trial to trial, we identified the location of the visual field that caused a
sustained elevation in firing rate during the delay period, termed the RF.
This hand-mapped location determined the position of the “preferred
choice” target in the direction-discrimination task. This screening pro-
cedure identified 59 neurons for additional study.

Based on previous studies, we expected that neurons with spatially
selective persistent activity would also discharge selectively when random
dot motion instructed the monkey to make an eye movement to the
preferred choice target (Shadlen and Newsome, 1996, 2001; Roitman and
Shadlen, 2002). Before conducting the full battery of experiments, we
confirmed this selectivity by having the monkey perform 10 –20 trials of
a simple version of the discrimination task using a relatively strong (easy)
motion stimulus (51.2% coherence, described below) shown for 500 ms.
We required the neuron to discharge selectively for preferred-target
choices, during both motion viewing (500 ms) and a delay period be-
tween extinction of the random dot motion and the extinction of the
fixation point, which signaled the monkey to make an eye-movement
response. Five neurons failed to exhibit selectivity on this test and were
excluded from additional testing. We recorded from the remaining 54
neurons in the main experiment for as long as the monkey would per-
form the reaction-time direction-discrimination task or for as long as we
could maintain single-unit isolation.

Reaction-time direction-discrimination task. Monkeys performed a
single-interval, two-alternative, forced-choice direction-discrimination
task (Fig. 2 A) using a stochastic random dot display (Newsome and Paré,
1988; Roitman and Shadlen, 2002). Each trial began when the monkey
fixated a central fixation point. Then, two choice targets appeared, typi-
cally 180° degrees opposite one another, at the same eccentricity. After a
random wait period (truncated exponential distribution: tmin � 150 ms;
tmax � 3200 ms; mean � tmin � 550 ms), the random dot motion stim-
ulus then appeared in a disk aperture (2.5° radius), centered 5° eccentric
from the fixation point. The monkey’s task was to discriminate the net
direction of motion in this random dot motion stimulus.

In this reaction time (RT) task, the monkeys controlled the motion
viewing duration. Whenever they were ready to indicate their choice
during dot viewing, they could complete the trial by making a saccadic
eye movement from the fixation point to one or the other choice target.
The dot display was extinguished when the monkey’s saccadic response
was detected. We measured both the accuracy and the reaction time of
the decision on each trial. Choices were graded as correct if they corre-
sponded to the direction of random dot motion. Reaction time is defined
by the latency from onset of random dot motion to the initiation of the
saccadic eye-movement response. The monkey was rewarded with water
or juice for all correct choices and on half the trials at 0% coherent
motion. On most trials, the fluid reward was delivered 100 ms after the
saccade. We also imposed a minimum time from the onset of the dot
display to the administration of fluid reward to discourage fast RTs. This
minimum time to reward was 1000 ms for monkey I and 800 –900 ms for
monkey S. Incorrect responses elicited no fluid reward and an additional
“time-out” delay before the beginning of the next trial. This error time
out was an exponential function of the error RT, selected to especially
discourage fast guessing (time � 20e (�4 RT) s, up to a 4 s maximum).
These reward and time-out contingencies helped to stabilize the mon-
keys’ performance by providing an incentive to view the dots for long
enough to ensure a reasonable level of accuracy. In similar experiments,
human observers are often given instructions to establish a desired
tradeoff between speed and accuracy (Reddi and Carpenter, 2000;
Palmer et al., 2005).

During each experimental session, one of the choice targets was placed
within the RF of the LIP neuron under study and is referred to as the
preferred choice target. The other choice target was placed well outside
the RF, typically in the opposite hemifield, and is referred to as the “null
choice” target. Across trials, the correct direction of dot motion was

Figure 1. Location of recording sites. Representative magnetic resonance images from one
monkey show the recording cylinder positioned above the intraparietal sulcus (ips, arrow-
heads). Recordings were made from the lateral bank of the intraparietal sulcus in a region
corresponding to ventral LIP by Lewis and Van Essen (2000). A, Coronal slice. B, Sagittal slice.
Images were obtained using short T1 inversion recovery acquisition at 1.5 T using carotid radio-
frequency coils placed adjacent to the head. Imaging voxel size was 0.47 � 0.47 mm square in
plane, 3 mm thick.
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randomized to two opposite directions, corre-
sponding to correct choices of one or the other
choice target. The strength of the random dot
motion was chosen pseudorandomly from a list
of six “motion coherence” values that spanned
psychophysical threshold (0, �3.2, �6.4,
�12.8, �25.6, and �51.2% coherence). Mo-
tion coherence refers to the probability that a
random dot seen at time t will be displaced ac-
cording to the correct direction of motion when
it is replotted 40 ms (three video frames) later. If
a dot is not displaced in motion, it reappears at
a random location in the display aperture. We
refer to the two directions of dot and texture
motion as positive and negative to reflect the
fact that they supported eye movements to ei-
ther the preferred or null choice target,
respectively.

A dim, dynamic random-pixel texture was
present within a 5° diameter patch. The center
of the patch was 5° from the point of fixation, �

2
radians counterclockwise along the circle
through the choice targets. For example, if the
preferred target was in the lower right quadrant,
the dots would were centered in the upper right
quadrant. The white dots (40 cd/m 2) were su-
perimposed on this texture and were distinct
from the mean luminance of the texture (2 cd/
m 2). We used this dim background texture to
perturb the motion energy in the display with-
out making any changes to the random dot motion. On one-third of
trials (“no-pulse”), the background texture modulated randomly, like
dark television snow. On the other two-thirds of trials, the texture also
contained a 100-ms-long motion pulse that could move in either direc-
tion (one-third of trials had “positive-direction pulses” and one-third of
trials had “negative-direction pulses”). On each trial, the background
pulse was presented at one of five possible times with equal probability
(100, 150, 211, 287, and 392 ms after the onset of the dots). Importantly,
the transitions from random modulation to a motion pulse (and back to
random modulation) were seamless: the change in motion was not asso-
ciated with a change in mean luminance or average contrast. Thus, pulse
and nonpulse trials were not obviously different in appearance, and these
perturbations were controlled independently of the random dot motion
display. Outside the dot/texture aperture, the blank background of the
display was equated with the mean luminance of the texture.

The motion-pulse textures were created starting with two dynamic
textures, one that carried positive-direction motion signals and one that
carried negative-direction motion signals. Their sum produced an undu-
lating dark background with no net motion. We produced motion pulses
by briefly perturbing the relative weight of the two textures while main-
taining a fixed contrast. To create a moving texture, we filtered Gaussian
white noise texture with a linear motion filter (Adelson and Bergen, 1985;
Watson and Ahumada, 1985; Freeman et al., 1991; Carney and Shadlen,
1993; Schrater et al., 2000). Let W(x,y,t) represent a truncated Gaussian
white-noise function, such that each pixel in each video frame is an
independent draw from a Gaussian distribution with mean 0 and unit SD
but resampled so that no values exceeds �2 s. We convolved W with an
impulse response of a broadband linear motion filter. A texture was
created from the sum of two textures, D(x,y,t) and S(x,y,t), which were
calculated as follows:

D� x, y, t	 � W� x, y, t	*
��t	�� x, y	� � W� x y, t	* ���t	�� y	

�x �
(1A)

S� x, y, t	 � W� x, y, t	*
��t	�� x, y	� � W� x, y, t	*���t	�� y	

�x � ,

(1B)

where x is the spatial dimension along the axis of motion, y is the orthog-
onal spatial dimension, and t is time. The * indicates convolution, �(x) is
the Dirac � function, and �(t) and �(t) are the Adelson and Bergen
(1985) temporal impulse response functions:

��t	 � �kt	ne�kt� 1

n!
� �kt	2/�n � 2	!� (2A)

��t	 � �kt	me�kt� 1

m!
� �kt	2/�m � 2	!� , (2B)

where n � 3, m � 5, and k � 40 s �1. The patterns were spatially filtered
to retain their broadband spatial characteristics but to incorporate dis-
placements consistent with motion. One copy of the noise pattern was
therefore convolved with a � function (which effectively implements no
spatial filtering), and the other was convolved with a hyperbolic (odd-
symmetric) weighting function that effectively shifted the phase of all
frequency components by 90° (the Hilbert transform of the Dirac � func-
tion, here with sign inverted). The discrete implementation on pixels was
achieved by defining the center pixel along x as 0. �(x) equals the inverse
of the pixel spacing, �x �1, at x � 0 and zero elsewhere. The desired
normalization of the hyperbola was achieved by replacing h(x) � 1

�x
with

its sampled facsimile:

h� x	 � � 2

�x
when

x

�x
is odd

0 otherwise
. (3)

In words, both textures D and S were made from the same white-noise
pattern, W. To make D, we (1) began with two copies of a dynamic
white-noise pattern W, (2) spatially filtered one of these copies to shift all
spatial frequency components by 90° along the axis of motion, (3) passed
the two copies of W (spatially filtered and unfiltered) through the tem-
poral impulse responses, �(t) and �(t), and then (4) added them to-
gether. The result contains motion energy in one direction [Carney and
Shadlen (1993), their Appendix].

For each trial, we created a base pair of these textures (positive and
negative directions), moving in opposite directions. To create a dynamic
texture with no net motion, the two textures were summed with equal
weights (no-pulse trials). To create a pulse moving in one direction, the

Figure 2. Direction-discrimination task. A, Monkeys performed a two-alternative RT direction-discrimination task. After fixa-
tion, two choice targets appeared in the periphery. One of the targets was within the RF of the neuron, indicated by the shading.
After a random delay, dynamic random dots motion appeared in a 5° diameter aperture. Both the strength of motion (percentage
coherence) and direction were randomized from trial to trial. The monkey indicated a direction choice by making a saccadic eye
movement to one of the choice targets. The motion stimulus was extinguished as soon as the gaze moved from the fixation point.
The RT is the time from motion onset until saccade initiation. On all trials, the random dots were superimposed on a dim dynamic
pixel noise texture background. On two-thirds of trials, the texture included a 100-ms-long motion pulse in either the same or the
opposite direction of the random dot motion. The pulse occurred at one of five possible times after dots onset. B, Space–time (x–t)
profile of the dynamic background texture. This is the time course of luminance across one row of pixels in the display. Note the
orientation in x–t during the pulse (indicated by the bracket). The vertical ( y) dimension of the texture is not shown. In any one
video frame, the luminance values at each pixel in a vertical column are independent, random values drawn from a Gaussian
distribution. The range of luminance actually used in the display was the lowest 10% of the overall range of the display. The
random dots that were superimposed on the background were shown at 100% intensity. For additional details, see Materials and
Methods. Example movies can be downloaded from http://www.shadlen.org/�mike/movies/pulse/.
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weight of one texture was temporarily increased as the other was de-
creased (positive-direction and negative-direction pulse trials). We then
adjusted the mean luminance of the texture to 2 cd/m 2, the same as the
screen background. The texture contrast was adjusted so that all lumi-
nance values spanned 0 – 4 cd/m 2, the bottom 10% of the intensity range
of the display. The result was a subtle, dim texture that is not easily
distinguished from a dark gray background. A space–time (x–t) slice of a
background texture is shown in Figure 2 B. The orientation that is evident
in a horizontal band of the image corresponds to a transient pulse
of rightward motion. Demonstrations of the motion pulse stimulus
are available on the internet at http://www.shadlen.org/�mike/
movies/pulse/.

We used only the two cardinal axes (right–left or up– down motions)
for the possible directions of dot and texture motions. For each experi-
mental session, we chose the direction-of-motion axis that was closest to
the axis defined by the choice targets, as determined by the location of the
RF of the LIP neuron. Variations in task geometry (e.g., differences be-
tween dot motion direction and saccade target locations) had negligible
effects on RT and accuracy.

Several factors led us to introduce the brief motion perturbations us-
ing background textures instead of simply “pulsing” the coherence of the
moving dot display itself. One advantage of the background textures is
that they provided more consistent motion perturbation across trials.
The density of random dots (16.7 dots per squared degree per second)
and their discrete nature limits the range of perturbations because of
quantization and binomial variability. In comparison, we were able to
manipulate the strength, direction, and timing of the fine texture mo-
tions more reliably because all pixels in the texture could carry motion
information.

Most importantly, this strategy allowed us to maintain an unambigu-
ous and simple reward scheme for the monkeys, who were trained to
respond according to the direction of random dot motion. By perturbing
the background texture and not the random dots, we could still reward
for the correct discrimination of random dot motion. This logic follows
the reward scheme applied in previous experiments during which mo-
tion viewing was perturbed not with motion pulses but with electrical
microstimulation of area MT (Salzman et al., 1992; Ditterich et al., 2003).
The optimal strategy given this reward scheme is to ignore the direction
of the motion pulses entirely (just as it was optimal to ignore the micro-
stimulation in previous studies).

Video display. Visual stimuli were presented on a 22 inch NEC/Mit-
subishi FP1370 monitor (75 Hz refresh rate). The full display subtended
34° � 25° visual angle at a viewing distance of 65 cm (1 pixel � 0.04° 2).
The monitor was controlled by a 10-bit intensity resolution video card
(ATI Radeon, Markham, Ontario, Canada) to better represent the inten-
sities present in the dim background motion texture. This 10-bit display
was programmed in Matlab 5.2.1 (MathWorks, Natick, MA) (for Macin-
tosh) using functions in the Psychophysics Toolbox (Brainard, 1997).

Analysis of behavioral data. On each trial in which the monkey viewed
the dots and successfully made a saccade to one of the choice targets, we
recorded the accuracy (correct or incorrect) and reaction time (time
from onset of random dots to initiation of saccade). Trials with excep-
tionally short (
100 ms) or long (�1650 ms) reaction times were re-
moved from additional analysis but were very rare (1%). We excluded
the rare short-RT trial because the responses were likely not based on
viewing of the motion stimulus (“fast guesses”) and excluded the occa-
sional long-RT trial because of technical limitations in presenting the
background textures for extended durations. To assess the effects of mo-
tion pulses, we also excluded the trials on which the response was made
before or during the motion pulse on that trial. These trials amount to an
additional �3% of the data. Our results do not change appreciably if
both types of excluded trials are included in our analyses, including our
estimates of the temporal persistence of pulse effects.

For each motion coherence, we calculated the proportion of preferred-
target choices and the mean RT. We fit a diffusion model to the depen-
dencies of both choices and mean RTs on motion coherence (Wald, 1947;
Stone, 1960; Link, 1975, 1992; Ratcliff, 1978; Smith, 1995; Ratcliff and
Rouder, 1998) (for a similar application, see Palmer et al., 2005). The
principle behind the diffusion model is to liken the decision process to

the diffusion of a charged particle in an electric field from a starting
position to a pair of absorbing boundaries. The motion strength biases
the diffusion of a state variable (effectively the accumulated evidence for
one direction and against the other) toward one absorbing boundary.
The decision terminates when the state variable reaches one of the ab-
sorbing boundaries at �A. The model makes the assumption that, in a
time increment, dt, the state variable changes by a random increment
drawn from a Gaussian distribution with mean �dt and variance dt.
When there is no net motion, there is no bias to this diffusion, so the
process, like Brownian motion, has an equal probability of stopping at
the �A or �A bound. The chief advantage of the diffusion model is its
capacity to jointly explain both choice and decision time as a function of
drift bias � and bound height A. Accordingly, the probability of making
a preferred-target choice (i.e., stopping at the positive bound) is

P� �
1

1 � e�2�A (4)

and the mean time required to reach either bound is

t�d � � A

�
tanh�A�	 � 	 0

A2 � � 0
. (5)

To fit the diffusion model to choice and RT data (see Fig. 3), we make the
following three simplifying assumptions. (1) The mean RT is t�d plus the
mean of an independent nondecision time t�nd that is not affected by
motion strength or direction. (2) The drift bias, �, is proportional to the
signed motion coherence, C (the sign of C indicates the direction of
motion). (3) Finally, we represent the effect of the background motion
pulse as equivalent change in motion strength. This is not strictly correct
because the pulse is only present for 100 ms, but the approximation
simplifies the fitting equations and leads to a useful statistical compari-
son of the effect of the pulses on choice and RT. The quality of the fits in
Figure 3 suggest that this is a fair approximation for analysis of the pro-
portion of choices and mean RTs.

Incorporating these assumptions into Equations 4 and 5 yields expres-
sions for the psychometric function (probability of a positive direction
choice) and chronometric function (mean RT) as a function of motion
strength, C, and background motion pulse, �:

P� �
1

1 � e�2k
C�
��A (6)

RT �
A

k
C � �
 � �	 ��
tanh�Ak
C � �
 � �	 ��	 � t�nd , (7)

where � represents the presence and sign of the background motion
pulse (0 if absent, �1 if present), and k, 
, �, t�nd, and A are fitted param-
eters. Notice that the expressions k[C � . . . ] substitute for � to imple-
ment the assumptions above. The functions in Equations 6 and 7 are fit
simultaneously to the choice and RT data on the idea that a single mech-
anism explains both the psychometric and chronometric function
(Palmer et al., 2005). These functions share the same bound height and
the same scaling between motion strength and drift bias. 
 estimates the
effect of the motion pulse on choices in units of C. We consider the
possibility that the motion pulse might affect RTs by a different equiva-
lent motion, 
 � �. Our fitting procedure simultaneously maximized the
likelihood of both choices and RTs under the assumption that choice
observations are distributed as binomial and mean RTs are distributed as
normal with measured SE. This maximum-likelihood fitting procedure
also furnished SEs of estimated parameters. These SEs were used to com-
pute confidence intervals (CIs) and t statistics.

To assess the time course of the pulse effects on choices (see Fig. 4), we
binned the data according to the time of the saccade (RT) relative to the
pulse onset. We grouped trials into consecutive 75-ms-wide “relative-
RT” bins and then quantified the effect of the pulse for each bin of trials
by fitting the psychometric function and estimating the effective hori-
zontal shift exerted by a pulse in either direction. To be able to apply the
same RT criteria to no-pulse trials as for positive- and negative-direction
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pulse trials, we assigned virtual “onset times” to no-pulse trials, matching the
distribution of actual pulse onset times for positive- and negative-direction
pulse trials. We then fit each relative-RT bin of choice data with a logistic
psychometric function:

P� �
1

1 � e���0��1C��2IP��3IN) , (8)

where C is motion coherence, IP and IN are indicator variables for the
presence of a positive-direction and negative-direction pulse, respec-
tively, and the � coefficients are fitted parameters.

To plot the data in Figure 4, we took the fitted pulse coefficients �2 and
�3 and converted them to units of equivalent motion coherence by di-
viding them by the motion coherence coefficient, �1. We converted the
SEs of the pulse coefficients (returned from a maximum-likelihood fit-
ting procedure) to motion coherence units similarly, using the average
value of �1 across all relative-RT bins.

Analysis of neural data. All physiological data reported in this paper
were acquired from trials in which the monkeys completed the direction-
discrimination task by choosing one of the two choice targets. Spike
times were recorded to 1 ms precision and aligned to events in the trial.
Trials were selected according to the same RT criteria for the analysis of
psychophysical data, but our results do not change appreciably if all trials
are included. To create the mean responses shown in Figure 5, we com-
puted a standard peristimulus time histogram using 1 ms bins and
smoothed the resulting responses with a 50 ms running mean.

To analyze the effects of motion pulses (see Figs. 6, 7, 10), we first
converted the spike times from each trial to a spike rate function (a
“response trace”) by convolving the time series of spikes (� functions)
with an � function (rise time, 1 ms; decay time, 25 ms; kernel cropped at
100 ms). To focus on the changes in spike rate after the onset of a pulse,
we subtracted the mean spike rate in the epoch 100 –200 ms after pulse
onset. This is the epoch that just precedes a detectable effect of the
pulse on neural activity. This served to vertically align the response traces
from individual trials at this common starting point.

To isolate the deviations in spike rate attributable to pulses, we com-
puted a set of reference responses against which we could gauge the effect
of the motion impulse. Each of these “response templates” was the mean
spike rate as a function of time for each neuron, for a given motion
stimulus (motion coherence and direction) and a given choice made by
the monkey (to the preferred target or to the null target). Each response
template included no-pulse, positive-pulse, and negative-pulse condi-
tions. To estimate the deviations in spike rate attributable to pulses, we
subtracted response traces from trials with pulses from the appropriate
response template. This strategy allows us to isolate the effect of a pulse,
expressed in terms of a deviation in spike rate from the level that occurs
as a function of motion, choice, and time. To produce the graph in Figure
6, we computed the average deviation in spike rate as a function of time,
aligned to the time of the pulse onset. We calculated the response tem-
plates for each neuron individually but found that computing the re-
sponse template using the average over all neurons yielded similar re-
sults. This technique isolates the effect of the pulse from the other factors
that affect the neural response. In effect, this analysis reveals the change in
spike rate as a function of time that can be attributed to the pulse.

We used a similar strategy to quantify the effectiveness of motion
pulses in individual neurons (see Fig. 7). For each trial, we measured the
deviation in spike rate attributed to the pulse (as described above). We
then calculated the average change in spike rate in the epoch beginning
225 ms after pulse onset and ending either 800 ms after pulse onset or 100
ms before the saccade, whichever came first. We chose this time epoch to
match the duration of pulse effects in the aggregate data (see Fig. 6). We
were thus able to test whether the pulse effects in individual neurons were
significant over the time frame exhibited in the population data. We
performed two-sample t tests comparing the distributions of positive-
pulse and negative-pulse effects (H0: positive pulse � negative pulse).
Averaging these deviations over trials also provided a single number for
each neuron in our sample for each pulse direction. To test whether these
average deviations in spike rate attributable to pulses were significant
across our population of LIP neurons, we performed a one-way ANOVA

(H0: positive pulse � negative pulse � no pulse). To examine the effect of
motion strength on the effectiveness of motion pulses (see Fig. 10 A), we
measured the average deviation in spike rate (described above); we then
calculated the average of this deviation in spike rate over the 250 –350 ms
after the pulse and analyzed these effects for each motion coherence
separately. We considered neural responses within this time range be-
cause we wanted to estimate the instantaneous effect of a pulse across
different motion coherences, without considering the longer-lasting ef-
fects of the pulse. To examine the effect of pulse onset time on the effec-
tiveness of motion pulses (see Fig. 10 B), we measured the average devi-
ation in spike rate over the 250 –350 ms after each pulse, thus quantifying
the instantaneous pulse effect for each pulse onset time separately.

For the additivity and time-shift invariance analyses (see Fig. 10), we fit
lines to ascertain the effect of motion strength or time of pulse on the
neural response after the motion pulse. To enhance the power of the
analyses, we combined data from both directions of random dot motion
and both directions of background pulses to estimate a single effect of
motion strength,

�y � � �0 � �1�C�
�0 � �1�C�

positive-direction pulse
negative-direction pulse (9)

or time of pulse

�y � � �0 � �1 �t � 100	 positive-direction pulse
�0 � �1 �t � 100	 negative-direction pulse (10)

where �y is the change in LIP spike rate attributed to the pulse in the
epochs defined above. If the effect of background motion pulse depends
on motion strength or time, then �1 � 0 in Equations 9 and 10, respec-
tively. These effects were assessed by two-tailed t tests (H0: �1 � 0). The
lines drawn in Figure 10 A reflect four individual applications of Equa-
tion 9, one to each combination of pulse direction and dot direction (i.e.,
we allowed �0 and �1 to vary freely for each line). The lines drawn in
Figure 10 B reflect two individual applications of Equation 10, one for
each pulse direction. The approximate mirror symmetry of the lines
shown in Figure 10, A and B, supports the use of the pooled analyses
described in Equations 9 and 10.

Simulation and analysis of a perfect integrator. We wanted to assess the
degree to which bounded integration would limit the effectiveness of
pulses and thus mimic the effect of integration leak. We also wanted to
determine whether the magnitude of change in response in LIP spike rate
is consistent with their effect on behavior (choices and RTs). As ex-
plained in Results, the presence of a decision bound limits the observed
temporal persistence of pulse effects. Even in a perfect (lossless) integra-
tor, the mean responses for both pulse conditions converge as they ap-
proach an asymptote at the decision bound. To tease apart the effects of
the decision bound from those of true leak of the integrator, we measured
the effects of pulses on a computer model that simulated LIP activity
and the corresponding decision process as driven by the perfect temporal
accumulation of sensory evidence to a decision bound. This model has
been described previously (Mazurek et al., 2003) and has been shown to
account for the major patterns of both psychophysical and physiological
data observed in an unperturbed version of this reaction-time direction-
discrimination task (Roitman and Shadlen, 2002). We extended the
model to include time-varying motion stimuli. We then measured the
effects of motion pulses on this model to assess the degree of temporal
persistence one would expect to observe under the assumption that LIP
spike rates reflect the perfect, but bounded, time integral of motion
evidence.

The model assumes that LIP spikes rates are driven by the time integral
of the time-varying difference between the spike rates of two opposing
direction-selective pools of MT neurons. Briefly, the model has three
stages: (1) “sensory,” representation of the motion evidence by simulated
MT neurons; (2) “temporal integration,” accumulation of the evidence
into a decision variable by simulated LIP neurons; and (3) “choice,”
comparison of the accumulated decision variable (LIP spike rate) with a
decision bound and subsequent behavioral response.

In the sensory stage, we simulate the responses of two opposed pools of
direction-selective MT neurons to random dot motion of varying mo-
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tion strengths and directions (e.g., left and right). Each neuron in the two
pools produces a sequence of spikes with an expected rate proportional to
the strength of motion (Britten et al., 1993). The expected rate through-
out a trial (with no motion pulse) is a constant, beginning 100 ms after
motion onset. Because the simulated neural discharge is variable, the
averaged spike rates contain variability as a function of time. The aver-
aged spike rate from the two pools furnishes the output of the sensory
stage, which is passed on to the temporal integration stage.

In the temporal integration stage, we simulate the responses of two
pools of LIP neurons. One of the LIP pools represents a plan to choose
one choice target (e.g., corresponding to rightward motion), whereas the
other represents the opposite plan (e.g., leftward). The expected firing
rates of these neurons are determined by the evolving time integral of the
difference in the output of the opposing MT pools. The expected LIP
firing rate is calculated by integrating the time-varying difference in spike
rate signals from MT. This integral is represented in LIP firing rate 125
ms later, consistent with our measurements (see below). The averaged
spike rate from the two pools of LIP neurons furnishes a pair of decision
variables on which the decision is made. The two ensemble average spike
rates are smoothed using a first-order filter with time constant of 0.1 s. As
noted by Mazurek et al. (2003), this smoothing is necessary because
fluctuations in the simulated instantaneous spike rate in LIP would lead
to early bound crossings, thereby dissociating choices from the sensory
evidence in area MT. The choice of 0.1 s is chosen to approximate the
smallest value that minimizes this discrepancy between mathematical
integration of MT signals and representation of this integral by spiking
LIP neurons. The presence of this smoothing step implies that the simu-
lated LIP signals are noisier than the signals that ultimately control be-
havior. This smoothing step may stand in for the neural computations
performed in other brain areas that are involved in this task but are not
included in the model architecture (e.g., frontal eye field and superior
colliculus). These smoothed LIP signals race against each other, reflecting
the weight of evidence for their preferred choice direction.

In the choice stage, the simulated LIP responses are compared with a
“decision bound,” a requisite level at which integration ends and a deci-
sion is rendered. The first LIP pool to reach its respective decision bound
determines the target choice and the decision time. A random time is
then added to mimic saccadic latency, noting that the total RT in a trial is
the sum of decision time plus several nondecision time intervals
(retina-MT visual latency, latency of decision-related activity in LIP, and
saccadic latency, accounting for �300 – 400 ms nondecision time on
average).

Although the model has several parameters, most were fixed by con-
sulting previous results and by matching general characteristics of the
LIP responses on trials with no pulses. The parameter values were similar
to those used by Mazurek et al. (2003), but fine adjustments were made to
provide a more precise match to the current set of stimulus conditions

and results. It is important to note that, although some of the parameters
were adjusted to fit various aspects of the data, they did not directly
determine the degree of temporal persistence in the model: the model
posits perfect, but bounded, integration. Specifically, the slope of the
linear relationship between dot motion coherence and MT spike rate was
adjusted to fit the slopes of the dependencies of choices and mean RTs on
motion coherence. The dynamic range of the LIP responses was adjusted
to fit the LIP responses we measured on no-pulse trials. The height of the
decision bound (in units of LIP spikes per second) was adjusted to fit the
observed psychophysical data on no-pulse trials. The equivalent strength
of the motion pulse was adjusted to match the overall effects of pulses on
choices and RTs. Finally, the postdecision saccadic latency was fit to
account for the range of observed RTs. Table 1 shows all model param-
eter settings.

We modeled the postdecision saccadic latency as an inverse Gaussian
distribution to model some of the likely variability in nondecision com-
ponents of the decision process (this contrasts with the simple diffusion-
to-barrier model we used for the fits of the psychophysical data shown in
Fig. 3, which did not need to consider variability to account for the mean
RTs). We also assumed that the various nondecision latencies were ad-
ditive, independent, and unaffected by the strength of motion or the
decision outcome. Although there is evidence for anatomical connectiv-
ity between MT and LIP (Blatt et al., 1990), it is certainly possible that
signals from MT pass through other areas before arriving at LIP (Schall et
al., 1995).

With the model parameters set, we then simulated the range of condi-
tions present in our experiments (motion coherence/direction, pulse
direction, and pulse onset time) and investigated the effects of the brief
motion pulses on the simulated LIP responses. To identify the degree of
temporal persistence one would expect if LIP reflected the perfect inte-
gral of motion evidence, we randomly selected one model neuron and
analyzed its spike times in exactly the same manner as we analyzed the
real LIP data (see above).

Results
We recorded from 54 LIP neurons in two rhesus monkeys
(55,014 trials; 35 neurons from monkey I, 19 neurons from mon-
key S) while they discriminated the direction of motion in a dy-
namic random dot display. As in previous studies, the stimuli
were chosen randomly from a list that spanned a range of motion
strengths in the two directions (Newsome and Paré, 1988). The
monkeys were rewarded for choosing the correct direction of net
motion, which they communicated by making a saccadic eye
movement to a peripheral choice target. We used a reaction time
version of this task in which we allowed the monkeys to initiate an
eye-movement response whenever ready (Roitman and Shadlen,

Table 1. Parameters in LIP simulation

Parameter Value Justification

MT, baseline firing rate 8 spikes/s Britten et al., 1993
MT, firing rate to 0% coherence 20 spikes/s Britten et al., 1993
MT, latency 100 ms Britten et al., 1993
MT, gain on preferred direction 0.36 spikes/s/%coh Match to psychophysical data on no-pulse trials
MT, gain on null direction �0.18 spikes/s/%coh Match to psychophysical data on no-pulse trials
Magnitude of interneuronal correlation r � 0.21 Bair et al., 2001
Timescale of interneural correlation width of CCG at half-height � 9 ms Bair et al., 2001
LIP, gain on MT signal 5.6 Match to LIP responses on no-pulse trials
LIP, baseline firing rate 48 spikes/s Match to LIP responses on no-pulse trials
LIP, latency 125 ms Match to LIP responses on no-pulse trials
Spike rate smoothing, MT � � 20 ms Mazurek et al., 2003; for explanation, see Materials and Methods
Spike rate smoothing, LIP � � 100 ms Mazurek et al., 2003; for explanation, see Materials and Methods
Height of decision bound 68 spikes/s Match to psychophysical data on no-pulse trials
Effective pulse strength 10% motion coherence Match to pulse effect on psychophysical data
Postdecision time Mean � 150 ms Match to psychophysical data on no-pulse trials

The table shows parameter settings for a simulated bounded integrator used to generate predictions in Figures 9 and 10. The “Justification” column indicates the source of data that was used to set the parameter. For simulation and analysis
of a model perfect integrator, see Materials and Methods. For comparison of LIP activity with perfect integration to a decision bound for additional information, see Results. %coh, Percentage coherence; CCG, cross-correlogram. Format
follows that for Mazurek et al. (2003).
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2002). The RT measured on each trial allows us to infer the time
period that the monkeys used to form each decision, comple-
menting the measurement of the accuracy of each choice.

In this study, we briefly perturbed the strength of the motion
while the monkeys formed their decisions by inserting 100-ms-
long motion pulses into the background of the visual display.
These brief perturbations allowed us test the hypotheses that de-
cisions about motion are informed by the accumulation of mo-
tion evidence as a function of time, and that neurons in area LIP
represent the time integral of the motion evidence. In the follow-
ing four subsections, we (1) describe the effects of pulses on psy-
chophysical performance, (2) describe the effects of pulses on LIP
activity, (3) compare the observed temporal persistence of pulse
effects on LIP activity with that of a simulated integrator that
performs perfect integration to a decision bound, and (4) assess
the additivity and time-shift invariance of the bounded integra-
tion evident in LIP.

Motion pulses affect perceptual choices and reaction times
The monkeys’ choices and RTs depended systematically on the
strength and direction of the moving dot display (Roitman and
Shadlen, 2002; Ditterich et al., 2003; Palmer et al., 2005) and were
further affected by the motion pulses. The positive and negative
motion coherences correspond to dot motions in opposite direc-
tions. By convention, the positive direction is the one toward the
eye movement target in RF of the LIP neuron (the preferred
choice target). Strong motion in either direction led to near-
perfect direction discrimination: almost all preferred-target
choices for strong positive motions and almost no preferred-
target choices for strong negative motions (i.e., all null-target
choices). For the purely random noise dots (0% motion coher-
ence, middle of graph), the monkeys distributed their responses
approximately equally between preferred-target and null-target
choices. At intermediate motion strengths, in which accuracy was
neither perfect nor at chance, the monkeys made an increasing
proportion of preferred-target and null-target choices with in-
creasing positive and negative motions.

On two-thirds of trials, we inserted a 100 ms motion pulse into
the dim random-pixel texture behind the dots. The pulse moved
in either the same or opposite direction of dot motion and oc-
curred at one of five possible times during the trial. Importantly,
the monkeys were rewarded for choosing the correct direction of
random dot motion and were thus encouraged to ignore the
motion pulse. Nonetheless, motion pulses exerted systematic ef-
fects on both choices and RTs. The insertion of a positive-
direction pulse increased the probability of the monkey making a
preferred-target choice, and the presentation of a negative-
direction pulse decreased the probability of a preferred-target
choice (Fig. 3A, green and red points). The motion pulses caused
the psychometric function to shift along the abscissa by an
amount equivalent to �1.6% coherent motion, as if the strength
of the random dots were altered by this amount for the entire
duration of the trial.

The motion pulses exerted a similar effect on RTs. On trials
during which no motion pulse was presented, the monkeys’ RTs
also depended on the direction and strength of the moving dots
(Fig. 3B, black points). At the strongest positive and negative
motion strengths, the monkeys made their decisions relatively
quickly, whereas at lower motion strengths, the monkeys took
progressively longer to complete trials. Positive-direction pulses
sped up RTs for preferred-target choices and slowed down RTs
for null-target choices. Likewise, negative-direction pulses
slowed down RTs for preferred-target choices and sped up RTs

for null-target choices (Fig. 3B, green and red points). The fact
that negative-direction pulses slowed down preferred-target
choices (and that positive-direction pulses slowed down null-
target choices) indicates that pulses could affect the decision pro-
cess even when they did not determine the choice itself. Indeed,
pulses shifted the RTs subtly but systematically, as if a small
amount of motion from the pulse was added to, or subtracted
from, the stream of motion information supplied by the dynamic
random dots.

The solid curves in Figure 3, A and B, are fits of a diffusion
model to the data (Eqs. 6, 7). They are derived from the premise

Figure 3. Motion pulses affect decisions and reaction times. A, Psychometric functions. The
proportion of preferred-target choices is plotted as a function of motion strength. Positive and
negative motion strengths (values along the x-axis) indicate motion for and against preferred-
target choices, respectively. The black points show the proportion of preferred choices when no
motion pulse was present. The green (or red) points show the proportion of preferred choices on
trials when a positive- (or negative-) direction motion pulse accompanied the random dot
motion. Positive- (negative-) direction pulses increased (decreased) the probability of
preferred-direction choices. The smooth curves are described by logistic functions (Eq. 6). The
horizontal displacement of the colored curves equates the pulses with the addition or subtrac-
tion of 1.6% coherent motion to the random dots stimulus. B, Chronometric functions. Mean
reaction time is plotted as a function of motion strength. Same format as in A. Positive-direction
pulses sped up RTs for preferred-target choices and slowed down RTs for null-target choices
(green points below black points for positive motion coherences; green points above black
points for negative motion coherences; green curve shifted leftward). Negative-direction pulses
exerted corresponding effects (red points and curves). The smooth curves are described by
Equation 7. Positive-direction (or negative-direction) pulses shifted the chronometric function
by an amount equivalent to adding (or subtracting) 1.6% coherent motion to the random dot
display. Mean RTs shown reflect both correct and error trials; a similar pattern is evident for just
correct responses. All curves in both panels are described by a single fit of Equations 6 and 7 to all
points in both panels.
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that a common process underlies the choice and decision time on
each trial. The key idea is that motion gives rise to a noisy quan-
tity, termed the momentary evidence, in favor of one direction
and against the other. The accumulation of this noisy momentary
evidence resembles the diffusion of a particle. The diffusion is
biased in the positive or negative direction, depending on the
direction and strength of the motion. The process terminates
when the accumulation reaches either a positive or negative
bound, thereby determining the choice and decision time.

All of the curves shown in Figure 3, A and B, were jointly fit
using a use a single diffusion model (Eqs. 6, 7). That is, for all
motion strengths and for all pulse conditions, we assumed a com-
mon value for the height of the decision bounds (�A), the same
constant of proportionality to convert from random dot motion
strength to momentary evidence (k), and the same mean nonde-
cision time (t�nd). The addition of a pulse was explained by adding
or subtracting 1.6% motion coherence to the random dot motion
(95% CI, 1.4 –1.7% motion coherence). We allowed for the pos-
sibility that the background pulses might affect choice and RT by
different amounts, but we failed to find evidence to support this
(Eq. 7; � � �0.05% motion coherence; no significant improve-
ment in fit by likelihood ratio test, p � 0.70). Similar effects of the
motion pulses on choices and RTs were observed in both of the
monkeys, although the absolute magnitude of the pulse effect was
stronger for one monkey than the other (Table 2). Together,
these results suggest that both the speed and accuracy of decisions
depended on a simple combination of random dot and texture
motions.

We reasoned that, if temporal integration underlies the
decision-making process, pulses should exert effects on choices
even for decisions made long after the brief pulse had occurred.
To examine this, we grouped trials based on the RT relative to the
onset of the pulse. In each group, we quantified the effects of
pulses on choices by estimating the motion coherence equivalent
to a pulse (i.e., similar to the way we analyzed pulse effects on the
aggregate choice data in Fig. 3A) (Eq. 8). As shown in Figure 4,
pulses affected the choices that occurred �300 ms after pulse
onset; trials in which saccadic responses were initiated earlier
relative to the pulse showed no significant effect of the pulse.
After this, however, the pulses had a persistent effect on choices.
Trials in which responses were initiated from 300 to 900 ms after
pulse onset showed a clear effect of the pulse on choice behavior.
Thus, responses made up to 900 ms after a pulse still reflected
effects of the pulse direction.

The time course of these effects also suggested that pulses
exerted a similar effect on choices across a range of RTs, instead of
preferentially affecting decisions made within a restricted time
range, shortly after the pulse. Had the pulses precipitated choices
in this manner, they would have distorted the shape of the RT
distributions, shifting probability toward or away from the pulse

time for preferred and null direction pulses, respectively. This
observation is not borne out by an examination of the RT distri-
butions. Positive and negative pulses simply scaled and shifted
the RT distributions seen on no-pulse trials (Kolmogorov–
Smirnov test, p � 0.6 for all pairwise comparisons of standard-
ized RT distributions: �pulse vs no-pulse, positive vs negative
pulse).

The persistent effect of the pulses on choices is consistent with
the existence of long-lasting temporal integration, or “memory,”
of sensory events. Furthermore, the fact that the pulse effects
persisted for hundreds of milliseconds enabled us to study the
physiological mechanism underlying this temporal integration.
In the following section, we describe how the latency and tempo-
ral persistence of the pulse effects on choices can be explained by
the neural activity in area LIP.

Motion pulses affect LIP activity
Neural activity in area LIP depended on the strength and direc-
tion of random dot motion, as shown previously (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002), and was further
perturbed by the motion pulses. On trials without a motion pulse,
the average spike rate increased or decreased as a function of time,
indicating whether the monkey would make a decision commu-
nicated by a saccade into or out of the RF of the neuron. These
responses also depended on the dot direction, motion coherence,
and amount of viewing time. These properties are apparent in the
responses of the single neuron shown in Figure 5A. The responses
are grouped by the monkey’s choices (thick vs thin curves) and by
the direction and strength of motion (indicated by shading).

Before the onset of random dot motion (Fig. 5A, vertical line),

Table 2. Summary of fits to behavioral data

Combined Monkey I Monkey S

k 0.426 (0.004) 0.411 (0.005) 0.500 (0.008)
A 22.811 (0.056) 22.358 (0.069) 22.63 (0.107)
tR 417 ms (2) 411 ms (2) 440 ms (3)

 1.60% (0.08%) 2.15% (0.10%) 0.89% (0.12%)
� �0.05% (0.13%) �0.30% (0.17%) 0.29% (0.22%)

Table shows best-fit parameters of Equations 6 and 7 to choice and reaction time data for both monkeys (“Com-
bined”, as shown in Fig. 3) and for both monkeys separately. SEs of fit parameters are in parentheses. The scaling
term, k, and the pulse effect, 
, are common to both psychometric and chronometric function fits; k is in units 
%
coh��1; 
 and � are in units of percentage coherence. Note that � appears only in the expression for the chrono-
metric function. It allows for the possibility that the pulse effects on choices and RTs might differ, but it was not
significantly different from 0 in all cases (likelihood ratio test, all p � 0.05).

Figure 4. Persistent effect of motion pulses on decisions. The effect of positive and negative
motion pulses on the monkeys’ choices is shown as a function of the time interval from the
motion pulse to the choice. Pulse effectiveness is quantified by the shift it induces in the psy-
chometric function along the motion coherence axis. Positive values on the y-axis correspond to
left shifts of the psychometric function (like the green curve in Fig. 3), equivalent to the addition
of y% coherent motion to the random dot stimulus (negative values correspond to right shifts;
red curve in Fig. 3). Trials were grouped in 75 ms bins according to their latency from onset of the
background motion pulse to initiation of the eye movement response: RT minus pulse onset
time. A psychometric function was fit to these data (effect of motion strength on choice; Eq. 8)
and compared with a comparison group of no-pulse trials with matching range of RT. The effects
of positive-direction and negative-direction pulses are given by �2 /�1 and �3 /�1 , respec-
tively (see Eq. 8). Error bars are SEs of the estimates of �2 and �3 , also expressed in units of
equivalent motion strength. Choices made up to 900 ms after a pulse were affected in a
direction-selective manner.
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the mean spike rate for this neuron was �50 spikes/s because of
the presence of one of the choice targets in the RF of the neuron.
After the onset of the dots, there was a dip-and-rise in activity,
followed by a ramp-like increase or decrease in activity that re-
flected the direction and strength of motion. Beginning 200 –225
ms after onset of the random dot motion, the spike rate increased
or decreased before preferred-target and null-target choices, re-
spectively. The ramp-like responses then developed over several
hundreds of milliseconds as the monkey formed its decision. The
slopes of these ramping responses depended on the strength of
the motion signal: stronger (or weaker) motions in the preferred
direction corresponded to faster (or slower) rates of increase, and
stronger (or weaker) motions in the null direction corresponded
to faster (or slower) rates of decrease. Within the last 100 ms
before a preferred-direction decision was made, the activity of
this neuron reached a common level independent of motion co-
herence. This is made clear by aligning responses not to the onset
of the dots but to the time of the saccade (Fig. 5B, vertical line).
The direction-, coherence-, and time-dependent responses illus-
trated by this neuron are representative of the sample of 54 LIP
neurons and are consistent with previous findings from our lab-
oratory (Roitman and Shadlen, 2002). We note that the dynamic
range of this sample neuron was higher than that of the popula-
tion average.

To gauge the effect of the motion pulse, we examined the

deviation in spike rate, as a function of time, from the neural
response that would have occurred independent of the presence
of a pulse. For each neuron, we estimated a response trace from
each trial, defined as the time-varying spike rate from onset of
random dot motion until 100 ms before saccade initiation (see
Materials and Methods). We then grouped these response traces
by choice and motion strength to form a set of time-dependent
averages, which we term response templates. We used all trials to
form these response templates regardless of whether a pulse was
present or not. Thus, each response template represents our best
estimate of the LIP spike rate as a function of time for a given
motion strength, direction, and choice, absent any knowledge
about the pulse. We then asked how trials with pulses differed
from these response template averages. In short, we estimated for
each trial the time-dependent residual from the corresponding
spike rate response template. The procedure identifies the change
in spike rate induced by the motion pulse, isolated from the ef-
fects of possible confounding factors (dot motion, monkey
choice, and time).

Figure 6 shows the time course of pulse-induced changes in
LIP activity, aligned to the onset of the motion pulse. The two
curves show the average deviation in spike rate caused by positive
and negative motion pulses across all trials for all 54 neurons. The
effects of motion pulses became evident �225 ms after the onset
of the pulse and persisted until �800 ms after the pulse. Thus, the
100-ms-long pulses affected LIP spike rates for �575 ms, indicat-
ing that LIP activity reflects sensory events that occurred over the
previous half-second or more. This timescale is considerably
longer than that observed in neural activity in sensory areas such
as MT, in which fleeting sensory events cause only fleeting
changes in spike rates for �120 ms (Bair et al., 1997; Bair and
Movshon, 2004; Cook et al., 2004).

Figure 5. LIP responses during performance of direction discrimination on stimuli with con-
stant motion strength. Responses are averaged spike rates from a single, representative LIP
neuron (i035). The traces are grouped by motion strength and the monkey’s choice. Positive and
negative motion strengths represent motion toward and away from the choice target in the
response field of the neuron (thick and thin curves, respectively). Only correct choices are
shown. A, Response averages are aligned to onset of random dot motion (left vertical line). Each
trial contributes the early portion of its activity to the average: either up to 100 ms before the
saccade or up to the median RT for the motion group, whichever occurs first. B, Response
averages are aligned to initiation of the saccadic eye movement response (right vertical line).
Each trial contributes the late portion of its activity to the average: either from 250 ms after
onset of motion or the remaining amount of time corresponding to the median RT for that
condition, whichever occurs last. The firing rate depends on motion strength during motion
viewing and reaches a common level of activity preceding the eye movement response.

Figure 6. Temporal persistence of pulse effects on LIP responses. Graphs are averages of the
pulse-induced change in firing rate as a function of time from pulse onset. The change in firing
rate is estimated using the deviation of each trial from a template firing rate function. Template
responses are averaged spike rates obtained from all trials sharing the same strength and
direction of random dot motion and the same eye movement response (to the preferred- or
null-choice target). Spike rates from single trials were calculated by convolution of the spike
train with an � function (�rise �1 ms, �decay �25 ms; see Materials and Methods). These spike
rates were used to compute both the templates and pulse-induced deviations. The deviations
were aligned in time to the onset of the motion pulse and then averaged to produce the graph
shown. The green and red curves show the deviation caused by positive- and negative- direction
pulses, respectively, averaged over all motion strengths and directions. Pulse effects were evi-
dent from 225– 800 ms after onset (n � 54 neurons from 2 monkeys, 55,014 trials total). The
inset (top right) shows the pulse effect only for trials with RTs that occurred at least 750 ms after
the onset of the pulse. Note that the latency and time course of the pulse effects are similar that
shown in the main graph.
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The lasting effect of the motion impulse on LIP activity is
consistent with the hypothesis that LIP represents the time inte-
gral of relative motion evidence in favor of one choice alternative
over another. Although it is tempting to interpret the diminish-
ing effect of the pulse in Figure 6 as a sign of the time constant of
the integrator, we will explain in a later section that such a gradual
decline of pulse effects are expected even if signals were integrated
perfectly, without substantial leak, to a bound. The important
point here is that pulses exerted an effect on the LIP response over
a duration that matched the timescale of the decision process in
this task.

One possible concern about the analysis in Figure 6 is that the
gradual and prolonged effect of pulses on the averaged data may
not be present in single trials. In principle, motion pulses could
affect neural activity briefly on any individual trial. To produce
the averages in Figure 6, we might imagine that the motion pulse
perturbs the firing rate briefly, at a variable latency just before the
saccade. In principle, the averaged pulse effects could reflect the
union of these brief events. To test this, we repeated the analysis
in Figure 6 using only trials with RTs � pulse onset time � 750
ms (Fig. 6, inset). An averaging artifact in this graph should delay
the effect of pulses, but the time course looks very similar to the
overall population average (Fig. 6, main panel). This demon-
strates that the latencies and time courses of pulse effects were not
closely linked to immediate behavioral responses and argues
against the idea that the pulses tended to exert fleeting effects on
individual trials.

Although the time course of pulse effects was difficult to ap-
preciate in a single experimental session (typically �1000 trials
per neuron), we confirmed that the changes in LIP spike rates
exerted by motion pulses were a reliable characteristic of the 54
neurons we tested. For each neuron, we calculated the average
change in spike rate caused by a positive or negative pulse in an
epoch beginning 225 ms after pulse onset and ending either 800
ms after pulse onset or 100 ms before the saccadic eye movement
(whichever came first). This is the period in which we observed
pulse effects in the aggregate data (Fig. 6). LIP neurons typically
discharged more on trials with positive-direction pulses than on
trials with no pulse, and less on negative-direction pulse trials
than on no-pulse trials (positive direction, �1.00 � 0.21 spikes/s;
negative-direction, �0.89 � 0.22 spikes/s; mean � SE) (Fig.
7A,B). These modulations of response after positive- and
negative-direction pulses were significant across our sample of
LIP neurons (F(2,159) � 22.28; p 
 10�8, one-way ANOVA) and
were individually significant in one-third (18) of the neurons
studied (positive direction � negative direction; t test, p 
 0.05;
13 of 35 in monkey I, 5 of 19 in monkey S). This analysis indicates
that the population of LIP neurons reflects the combination of
both dot and texture motions, and that the effect shown in the
population average (Fig. 6) is representative of the effects in in-
dividual neurons.

The pulse effects we measured were subtle, and many of our
analyses benefit from the power achieved by combining all our
data across recording sessions and across monkeys. However, on
some individual recording sessions, we were able to observe pulse
effects similar to those seen in the population data. Figure 7C
shows the pulse effects on the activity of a single LIP neuron, in
the same format as the population data in Figure 6. Pulses af-
fected the activity of this neuron on a timescale very similar to
that of the population. Although such recording sessions were
exceptional, this observation further supports the idea that the
activity of at least some individual neurons can reflect substantial
temporal integration similar to that shown in the population

Figure 7. Population summary of motion pulse effects on LIP activity. For each neuron, the
pulse-induced change in firing rate was averaged over the 225– 800 ms epoch after pulse onset.
A, Frequency histogram of pulse-induced change in firing rate after positive-direction pulses.
Positive-direction pulses increase LIP activity. Neurons with individually significant pulse effects
are shaded (positive-direction pulse � negative-direction pulse; t test, p 
 0.05). Arrowhead
indicates the change in firing rate from the sample neuron (i034) shown in C. B, Frequency
histogram of pulse-induced change in firing rate after negative-direction pulses. Negative-
direction pulses decrease LIP activity. Same format as A (n � 54 neurons). C, Temporal persis-
tence of pulse effects on responses of a single LIP neuron. Pulse effects seen in this neuron (i034)
were similar to that observed in the population (same format as Fig. 6; note that the time course
of the population average pulse effect shown in Fig. 6 was not affected by removal of this unit
from the population).
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average. Likewise, pulse effects in the two monkeys were similar
to the averaged data, although both the psychophysical and phys-
iological pulse effects were slightly stronger in monkey I than
monkey S (see above) (Table 2).

Finally, we note that we rewarded the monkeys for choosing
the correct direction of dot motion, regardless of the pulse direc-
tion (see Materials and Methods). This reward scheme may in-
deed have motivated the monkeys to actively ignore the motion
pulses present in the background texture, leaving open the pos-
sibility that the monkeys transiently attended to the background
texture in an attempt to selectively “filter out” the motion pulse.
However, the fact that pulses exerted direction-selective effects
(increasing for positive direction, decreasing for negative direc-
tion) on both choices and neural responses cannot be accounted
for by a time-varying increase in perceptual sensitivity or in neu-
ral activity associated with time-varying increases in attention at
the time of a pulse (Ghose and Maunsell, 2002).

Comparison of LIP activity with perfect integration to a
decision bound
As described above, our results demonstrate that both LIP spike
rates and psychophysical choices reflect substantial temporal in-
tegration of visual motion: brief pulses of motion exert effects
that persist for several hundreds of milliseconds. Although the
effects of pulses on choices and LIP spike rates decline over time,
this apparent “decay” will occur in even a perfect integrator so
long as the noisy accumulation process stops when it reaches a
decision bound.

This point can be made evident by numerically simulating the
responses of a perfect integrator. Figure 8A shows simulated re-
sponses of a perfect integrator as it accumulates evidence in favor
of a preferred-target choice. Green traces indicate trials with a
positive-direction pulse, and red traces indicate trials with a neg-
ative direction pulse. The thin lines show the response of the
perfect integrator on individual trials. Note that each individual
path meanders because of noisy samples of sensory evidence ac-
quired at each instant in time. This meandering accumulation

process can be likened to a random walk or diffusion process. The
thick lines show the average response: a ramp of activity bumped
up or down after onset of a motion pulse. As a result of the perfect
temporal integration, the effects of these brief perturbations per-
sist as parallel offsets that continue over time.

In our decision-making task, this integration does not con-
tinue on indefinitely. The decision-making period of each trial is
thought to end when the monkey has accumulated a criterion
amount of evidence in favor of one alternative over another. This
idea is consistent with the observation that the firing rates of LIP
neurons rise to a common value 70 –100 ms before a behavioral
response is made (Fig. 5B) [Roitman and Shadlen (2002) their
Fig. 8]. Although the firing rates of many neurons may continue
to change in the ensuing interval just before and during the sac-
cade, none of these spikes are included in our analyses (Figs. 6, 7).
Each trial contributes spikes only up to 100 ms before saccade
initiation. Thus, to a first approximation, each of the trials lead-
ing to a preferred choice can be regarded as an integration path
that terminates at the decision bound. As shown in Figure 8B
(dashed lines), the average of these integration paths approaches
an asymptote at the decision bound.

This same logic applies to trials in which the integrated evi-
dence is perturbed by a positive or negative background pulse.
Because these paths approach a common asymptote, they must
converge over time, even if each individual trial reflects perfect
integration. The thick lines in Figure 8B show the average of the
integrated signals as they approach the decision bound. This sim-
ple illustration supports the idea that bounded, but otherwise
perfect and linear, integration would give rise to the appearance
of a diminishing pulse effect in time when one considers the
average integration path over multiple trials.

To estimate the degree of temporal persistence one would
expect to observe if LIP spike rates reflected the perfect temporal
integration of evidence up to a decision bound, we replaced the
schematic trajectories in Figure 8 with mean spike rates of simu-
lated LIP responses. The model used to generate these simulated
LIP responses posits that the firing rates of LIP neurons repre-
sents the (perfect) time integral of the difference between the
firing rates of opposing, direction-selective pools of neurons in
area MT. These direction-selective neurons are modeled with
realistic levels of variability and covariance (Britten et al., 1993;
Zohary et al., 1994; Shadlen and Newsome, 1998; Bair et al.,
2001); they give rise to noisy accumulations. The spike discharge
from each simulated LIP neuron is a noisy instantiation of these
accumulations. We model two types of LIP neurons: those that
represent the accumulated evidence for the positive direction and
against the negative direction, and those that represent the oppo-
site accumulation. The decision process terminates when the
pooled activity from one of the LIP populations reaches a crite-
rion level of firing rate. This model has been described in detail
previously and was shown to account for the major psychophys-
ical and physiological results in an unperturbed version of the RT
direction-discrimination task (Mazurek et al., 2003) (see Materi-
als and Methods).

We calibrated the model by approximating the dependencies
of choice and mean RT on motion coherence, for unperturbed
motion (Fig. 9A,B, black points). To do this, we adjusted four
parameters of the model: (1) a scaling factor that governs the
mean spike rate of MT neurons as a function of motion strength;
(2) the bound height that governs the speed accuracy tradeoff
(i.e., the number of excess spikes from rightward- vs leftward-
preferring MT neurons needed to terminate the decision process
with a “right” choice); (3) a scaling factor that converts the rep-

Figure 8. Presence of a decision bound limits the apparent degree of temporal persistence of
pulse effects. Integration of noisy sensory signals can be described as a random walk or diffusion
process. The thin traces in both panels show sample trajectories of such diffusion processes.
They depict the accumulated sensory evidence associated with repeated trials using a relatively
strong positive motion. The sensory signal gives rise to a sequence of random numbers drawn
from a Gaussian distribution with mean � (
2 ��t). After 100 ms, the mean changes to ��
�� for 100 ms and then returns to �. Each trace is the time integral of such a sequence of
random numbers (green, ��� mimicking a positive-direction pulse; red, ��� mimicking a
negative-direction pulse). The time integrals are themselves perfect: they do not introduce
additional noise and there is no decay. Averages of these trajectories are shown by the thick
lines. A, Unbounded case. The mean trajectories are straight lines with slope � �, which is
perturbed momentarily by ���. Under the assumption of perfect integration, the mean
trajectories remain separated for all t. B, Bounded case. The mean trajectories begin as in A, but
they approach an upper bound. The perturbation still causes a separation of the averaged
trajectories, but this separation diminishes over time.
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resentation of this integrated difference to the averaged responses
of our LIP neurons; and (4) a nondecision time that reflects the
delay between LIP activity reaching the decision bound and the
actual execution of the saccadic response. The model provides a
coherent explanation of the monkeys’ behavior and the LIP re-
sponses on trials without a pulse, on the assumption that LIP
neurons represent the integral of the difference in firing rates
between direction-selective neurons in MT. The quality of the fit
does not prove this assumption true. Here we use the model to
ask a simple question: what is the predicted change in LIP re-
sponse to the pulses under the hypothesis of perfect, bounded
integration?

To answer this question, we simulated trials with pulses by
increasing or decreasing the expected firing rate of MT neurons
for 100 ms. We used the same mixture of trial types (range of
motion strengths, directions, pulse onset times, and pulse direc-
tions) as in our experiments. We adjusted one parameter: the
change in MT firing rate was set to match the observed effect on
behavior (a horizontal shift of the curves equivalent to �1.6%
motion coherence) (Fig. 9A,B, colored curves). This was the only
change we introduced to the model to accommodate the pulses.

We then assessed the change in activity in the simulated LIP
neurons on the idea that these neurons represent the perfect time
integral of MT signals. We applied the same analysis to the sim-
ulated LIP responses that was applied to the data: removing tem-
plate responses to isolate the effect of the pulse. The latencies in
the model ensure that the onset of a pulse (and the onset of
motion) begins to affect the LIP firing rates 225 ms after onset. As
shown in Figure 9C, the pulses caused an increase or decrease in
simulated spike rate of 1.5–2.5 spikes/s. This difference dimin-
ished gradually over the ensuing �625 ms. In contrast to a per-
fect, unbounded integrator, which would show pulse effects that
continue forever, the perfect, bounded integrator shows a grad-
ual decline of pulse effects similar to that observed in the LIP data
(compare with Fig. 6). The model exercise suggests that the size
and time course of the pulse effects on LIP are consistent with
integration to bound. However, the pulse effects in our data were
somewhat smaller than predicted and not quite as persistent. We
consider several explanations for this discrepancy in the follow-
ing section.

More generally, this analysis demonstrates that our measure-
ment of the temporal persistence of pulse effects does not furnish
an estimate of the leak of the integration process. The presence of
the decision bound explains the dramatic decline of pulse effects
with time. Of course, there is not perfect agreement between
model and data, but the relatively small remaining difference
between the pulse effects seen in the LIP data and in the simulated
integrator does not necessarily implicate a leaky integrator. In-
stead, there are several potential ways in which LIP could deviate
from the ideal integration posited in our simulations. In the next
section, we investigate two assumptions of linearity that underlie
the ideal bounded integration process: additivity and time-shift

4

expected change in stage 1 firing rates accompanying the 100 ms background pulses was
adjusted to approximate the observed shifts in choice and RT associated with positive- and
negative-direction pulses (green and red curves, respectively). C, Model predictions for stage 2
neurons. The calibrated model was used to simulate the experiment, using the same motion
strengths, directions, pulses, pulse times, and number of trials. The simulated responses
(spikes) from stage 2 neurons were analyzed in the same way as the neural data (see Fig. 6).
Positive-direction pulses induced positive deviations in spike rate from stage 2 neurons (red curve).
Negative-direction pulses induced negative deviations in spike rate. The magnitude and time course
of the pulse-induced deviations of stage 2 neurons is similar to real LIP neurons (Fig. 6).

Figure 9. Simulated perfect integrator accounts for choices, RTs, and LIP activity. Results of
simulations of a three-stage model. Stage 1 contains two pools of direction-selective neurons
with properties like neurons in area MT. The pools prefer motion in the positive and negative
directions, respectively. Their firing rates are proportional to motion coherence plus a constant
plus noise, delayed by 100 ms relative to the motion stimulus. Stage 2 contains two pools of
neurons, which are hypothesized to bear the following similarity to LIP neurons described in this
paper. Their spike rates represent the integral of the difference in spike rates from opposing
pools of the simulated MT neurons, delayed by 125 ms relative to the MT response. The pools
integrate evidence for/against and against/for the positive direction of motion. Stage 3 is a
threshold crossing detection that terminates the decision when the average response of one of
the stage 2 pools reaches a bound. The pool reaching the bound first governs the choice; the
behavioral response is initiated �150 ms later. Note that the averaging described above is over
neurons in the pool, not over time. A, B, Calibration of the model using the behavioral results.
Filled points show the same data as in Figure 3. The solid curves are averages from model
simulations. The expected firing rates of stage 1 neurons to positive and negative motion were
adjusted, along with the height of the decision bound in stage 3, to approximate the psycho-
metric and chronometric functions on trials without motion pulses (black curves in A, B). The
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invariance. In our experiment, additivity would correspond to
pulses exerting equal effects across trials with different motion
coherences, and time-shift invariance would correspond to
pulses exerting equal effects regardless of when they were pre-
sented. These analyses identify a departure from time-shift in-
variance that may underlie the difference in pulse effects seen in
LIP and the simulated perfect integrator.

Additivity and time-shift invariance of integration
In a perfectly linear integrator, the effect of a perturbation would
not depend on the background value that the integration has
attained up to the time of the perturbation, nor would it depend
on the time that the perturbation is applied. In our experiments,
we would expect a perfect integrator to respond to motion pulses
identically, whether they are superimposed on strong or weak
motion (additivity) and whether they are applied earlier or later
during random dot motion viewing (time-shift invariance). In
this section, we assess these characteristics in the LIP data and
compare them with the output of the simulated perfect, bounded
integrator introduced in the previous section. Analogous to the
way that the bound limits the temporal persistence of measured
pulse effects (Fig. 8), the decision bound also limits the range over
which one would expect to observe additivity and time-shift
invariance.

To assess additivity of the instantaneous pulse effects, we mea-
sured the average pulse effect over the 250 –350 ms after a pulse.
We restricted our analysis to the earliest pulse and to a short time
window immediately after the pulse effect was evident. This al-
lowed us to focus on responses that occurred relatively early dur-
ing motion viewing and were thus were less likely to be affected by
the presence of the decision bound.

The analysis shown in Figure 10A depicts pulse effects on LIP
firing rate across the range of random dot motion strengths to
which the pulses were added (Fig. 10A, left). There is a tendency
for pulses to exert smaller effects when added to stronger motion
strength (Eq. 9, �1 � �2.5 spikes/s per 100% motion coherence;
95% CI, �4.6 to �0.3; p 
 0.05, two-tailed t test). Interestingly,
a similar trend is apparent in the model (Fig. 10A, right). This
perfect, bounded integrator predicts a similar dependence on the
strength of random dot motion (Fig. 10A, right) (�1 � �1.5
spikes/s per 100% motion strength; 95% CI, �3.7 to 0.8; p �
0.18; same number of trials in simulation and data).

This analysis suggests that the immediate effect of a pulse on
spike rates was approximately additive with the effects of dot
motion coherence. The tendency for pulses to exert weaker ef-
fects on trials with higher motion coherences occurs because the
accumulation on high coherence trials tends to be closer to the
decision bound at the time of pulse onset. Deviations from addi-
tivity would be expected to become increasingly apparent for
pulses that occurred later during the trial and for responses as-
sessed longer after the pulse.

To assess time-shift invariance of the pulse effects, we mea-
sured the average pulse effect over the 250 –350 ms after a pulse,
for each pulse onset time separately. We focused this analysis on
the two weakest motion strengths (0 and 3.2% coherence) be-
cause they typically result in longer RT. Nonetheless, because
later pulses necessarily occur when the integration process is
closer to the decision bound, one might expect that later pulses
will be more affected by the presence of the decision bound.

The analysis shown in Figure 10B shows the average pulse
effect as a function of the onset time of the pulse relative to the
start of the moving dot stimulus. Pulses delivered later in the trial
appear to influence the LIP response to a lesser degree than pulses

delivered early in the trial (Fig. 10B, left). The regression fits
point to a substantial departure from time-shift invariance. Pulse
effects declined at a rate of �0.6 spikes/s per 100 ms of pulse onset
time (95% CI, �0.9 to �0.3; p 
 0.001, t test).

Not surprisingly, the simulated perfect, bounded integrator
exhibits a departure from time-shift invariance (Fig. 10B, right).
However, the regression demonstrates that the effect is consider-
ably weaker than in the data (�0.1 spikes/s per 100 ms of pulse
onset time; 95% CI, �0.4 to 0.1; p � 0.29). It appears that
bounded integration is not sufficient to explain the weak impact
of later pulses on the LIP responses. An attractive possibility is
that the decision bound is not stationary but decreases over time
(Ditterich, 2006). Equivalently, an “urgency” signal might be
added to the accumulated evidence (Janssen and Shadlen, 2005).
Time-varying effects of attention (Ghose and Maunsell, 2002) or
neuronal responsivity (adaptation) might also play a role. Alter-
natively, the neural mechanism underlying the integration pro-
cess itself might incorporate nonlinearities (e.g., attractor dy-

Figure 10. Analysis of additivity and time-shift invariance of LIP responses. A, Brief back-
ground pulses add or subtract a nearly constant offset to the LIP firing rate, regardless of the
strength of random dot motion. The pulse-induced change in firing rate was measured in the
epoch from 250 to 350 ms, using only the earliest pulse onset time (100 ms). The change in LIP
firing rate is plotted as a function of the strength of random dot motion to which it was added
(left). The same analysis was applied to simulated LIP responses (right), and a similar relation-
ship between pulse effect and motion coherence was observed. Green points and lines, Positive-
direction pulses; red points and lines, negative-direction pulses. Displayed regression lines were
fit independently to each pulse and dot direction (4 total); statistics were computed on the
results of a combined fit (Eq. 9). B, Background pulses add or subtract less when they occur later
during motion viewing. The pulse-induced change in firing rate was measured in the epoch
from 250 to 350 ms, separated by the onset time of the pulse. The change in LIP firing rate is
plotted as a function of pulse onset time (left). Later pulses exerted weaker effects than earlier
pulses. The same analysis was applied to simulated LIP responses (right). The decline of pulse
effects with onset time in this model integrator is less steep than in the LIP data. Displayed
regression lines were fit independently to each pulse direction; statistics were computed on the
results of a combined fit (Eq. 10). Green points and regression lines, Positive-direction pulses;
red points and lines, negative-direction pulses.
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namics) that accelerate the rise of the LIP response in time
(Wang, 2002). All of these potential nonlinearities would de-
crease the sensitivity to perturbations presented later in time.

The observed departure from time-shift invariance is less eas-
ily accounted for by leak of the integration process. Although leak
can decrease the temporal persistence of pulse effects, it should
not preferentially affect the strength of pulses that occur later in
time. A more in-depth treatment of the linearity of various com-
ponents of the integration mechanism will require additional
experimentation. At present, our results demonstrate that LIP
spike rates reflect substantial temporal integration.

Discussion
By presenting time-varying visual stimuli while monkeys per-
formed a random dot direction-discrimination task, we tested
the degree to which both decision-related activity in LIP and
psychophysical decisions reflected temporal integration of sen-
sory evidence. We observed that the effects of brief motion pulses
on both LIP activity and choices persisted for several hundreds of
milliseconds, consistent with temporal integration on the time-
scale of decisions in our discrimination task. Computer simula-
tion of LIP as a perfect, bounded integrator suggests that the
temporal decline of pulse effects is not primarily caused by a short
integration time constant (or leak) in the integration process
itself. Rather, the time course of the pulse effects is consistent with
the hypothesis that LIP reflects approximately linear integration
that stops when the accumulation reaches a bound.

Previous experiments using dynamic random dot motion
stimuli have indicated that discrimination accuracy improves as
if dependent on the linear accumulation of signal plus variance
(i.e., signal-to-noise ratio was proportional to √�t ) over several
hundreds of milliseconds and sometimes over 1 s or more (Wata-
maniuk and Sekuler, 1992; Watamaniuk, 1993; Grzywacz et al.,
1995; Gold and Shadlen, 2000; Burr and Corsale, 2001; Burr and
Santoro, 2001). The accumulation inferred from psychophysics
implies that the brain computes an integral with respect to time.
It is worth noting that such integration does not hold for all visual
tasks. In simple detection tasks, for example, linear accumulation
of signal plus variance is often restricted to very short durations,
under 80 ms (Watson, 1986). Moreover, improvement in detec-
tion associated with longer viewing exposures is not explained by
temporal integration but rather by an increase in the number of
opportunities to detect an extreme value among a series of brief,
temporally independent, noncumulative observations, a process
termed “probability summation over time” (Watson, 1979). We
do not know why the visual system integrates in some cases but
not others, although we suspect that the stochastic nature of the
moving dot stimulus makes this beneficial.

Our findings provide direct support for this time-integral
computation by demonstrating that brief perturbations of the
stimulus have long-lasting effects on both decisions and neural
activity. Although the pulses lasted only 100 ms, their effect on
decisions was �0.5 s, lasting from 225 to 800 ms from the time of
onset. Moreover, the effect of pulses on RTs suggests that they
simply added or subtracted a fixed amount of momentary direc-
tion evidence, even when they did not determine the choice. This
pattern of results requires a decision-making mechanism that
maintains a persistent record of accumulated sensory evidence in
favor of one alternative over the other until the end of the trial. A
large class of decision-making models posit some form of tempo-
ral integration, including accumulator (LaBerge, 1962; Audley
and Pike, 1965; Vickers, 1970), random walk (Stone, 1960; Link,
1975; Link and Heath, 1975; Laming, 1979), diffusion (Ratcliff,

1978; Ratcliff et al., 2003), and a variety of nonstationary and
hybrid models (Smith, 1995, 2000; Usher and McClelland, 2001;
Ditterich, 2005). Our results provide clear psychophysical and
physiological support for such a temporal integration mecha-
nism, and they are inconsistent with alternative mechanisms that
do not rely on temporal integration. For example, it is possible in
principle that the discrimination is performed on the basis of
brief salient sensory events that either succeed of fail to induce a
decision. Such memory-less mechanisms are supported in grat-
ing discrimination experiments (Watson, 1979) (but see Burr
and Corsale, 2001). They are incompatible with the findings in
our study because brief perturbations affect behavior and the
neural response over a prolonged interval.

The motion pulses we inserted during the discrimination pro-
cess serve as temporal “tags” that allow us to trace the time course
of changes in the visual scene through neural activity and the
behavioral response. The pulses first affected LIP activity �225
ms after onset and caused detectable changes in firing rate for
another �575 ms (Fig. 6). The pulses affected choices over a
similar range of times but lagged the LIP changes by �75–100 ms
(Fig. 4). The order of these effects suggests that LIP activity does
not reflect a postdecision feedback signal representing a choice
that has already occurred but more likely reflects the ongoing
computations during the formation of decisions. Although this
temporal ordering does not guarantee causation, the temporal
relationship between LIP activity and choices suggests that the
signals in LIP are available to guide behavior.

The latency for motion information to affect LIP activity is
long compared with the responses of LIP neurons to visual stim-
uli in their receptive fields (Bisley et al., 2004). However, it is
important to realize that, in our experiments, the motion is not in
the receptive field of the neuron; one of the choice targets is. This
suggests that the decision-related activity in LIP, which is based
on sensory information outside the LIP RF, might excite LIP
neurons using a different pathway or different circuitry within
area LIP.

As shown previously (Roitman and Shadlen, 2002) and as
replicated in these experiments, the first 200 –225 ms of the LIP
response after the onset of the moving dots follows a stereotyped
dip-and-rise that reflects neither the strength and direction of
motion nor the monkey’s choice. It was not clear from these
previous observations whether the first 200 –225 ms of visual
motion information was ignored by LIP or was simply delayed in
arriving at LIP. The finding here that motion pulses affect LIP
response with a latency of 225 ms suggests that LIP does not
ignore the first 200 –225 ms of random dot motion but instead
lags the visual stimulus by �225 ms.

Thus, we hypothesize that the first 225 ms of LIP activity (the
dip-and-rise) reflects a “reset” of the integrator, after which tem-
poral integration of the motion signals begins. Once LIP activity
reaches a decision bound, another �100 –150 ms are required to
execute the motor response (Colby et al., 1996; Roitman and
Shadlen, 2002). Interestingly, dip-and-rise response profiles with
similar latencies have been reported in other tasks and brain areas
(Sato and Schall, 2001; Leon and Shadlen, 2003) in which they
also appear to signal the beginning of a cognitive process.

The end of the integration process is more mysterious. We do
not know how the level of the decision bound set or how it is
applied to level of integrated evidence. Human subjects are capa-
ble of adjusting the decision bound to implement a desired bal-
ance between speed and accuracy in the direction-discrimination
task (Palmer et al., 2005). A recent theoretical study suggests that
the superior colliculus and basal ganglia might play a role in both
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setting the bound level and detecting a bound crossing (Lo and
Wang, 2004). Additional experiments will be needed to test this
intriguing hypothesis.

Our experiments do not furnish a measurement of the inte-
gration time constant. The modeling exercise in Figures 8 –10
demonstrate that an integrator with an infinite time constant
(i.e., with no leak) will not show lasting effects of a motion per-
turbation if integration terminates at a bound. Nevertheless, in
simple eye-movement tasks, LIP neurons can maintain persis-
tently elevated firing rates during memory delays substantially
longer than the timescale of decisions in our task (Gnadt and
Andersen, 1988; Friedman and Goldman-Rakic, 1994; Li et al.,
1999; Paré and Wurtz, 2001; Goldberg et al., 2002; Zhang and
Barash, 2004). These observations suggest that the circuitry is not
inherently leaky (Kaneko, 1999; Goldman et al., 2002; Major et
al., 2004; Mensh et al., 2004), at least not over the timescale we
considered in our experiments. Taking into account the sensory
and motor latencies that constitute some portion of the monkeys’
reaction times, the temporal persistence of our pulses provides
direct support for neural integration on a timescale of at least
�0.5 s. The capacity of LIP neurons to integrate beyond this time
will need to be tested in a different behavioral paradigm.

Our experimental findings show that LIP neurons represent
the time integral of motion evidence but lend little insight into
the mechanism underlying the integration process. We do not
know whether the neurons we studied actually perform the inte-
gration or whether they are relaying the result of a neural com-
putation performed by other neurons in LIP or in another struc-
ture. If the latter, then they appear to mirror the computation
with great fidelity, because the LIP responses bear an uncanny
resemblance to the signals that govern choice and RT. Con-
versely, LIP may be part of a larger neural system involved in
temporal integration. Indeed, it is likely that LIP works in concert
with other areas that exhibit both persistent and decision-related
activity, such as the prefrontal cortex and superior colliculus
(Kim and Shadlen, 1999; Horwitz and Newsome, 2001a,b; Gold
and Shadlen, 2003; Ratcliff et al., 2003). Whether the integration
is performed in LIP or elsewhere, the LIP activity we measured
shows small deviations from the mathematical idealization. The
main deviation from ideal integration is explained by terminating
integration once a bound or criterion is reached. Other depar-
tures from linearity that we observed (Fig. 10B) might be ex-
plained by emerging models of neural integration that depend on
nonlinear mechanisms such as attractor dynamics (Wang, 2002;
Machens et al., 2005) or hysteresis in input– output relationships
(Koulakov et al., 2002; Goldman et al., 2003). Additional exper-
iments using more complex perturbations (e.g., pulse pairs) are
expected to shed light on these possibilities.

Our results suggest an analogy between the temporal integra-
tion by LIP of sensory evidence into a decision variable and the
conversion by the brainstem oculomotor integrator of a transient
velocity signal into a persistent position signal used to maintain a
steady eye position (Cannon et al., 1983; Cannon and Robinson,
1987; Kaneko, 1997; Aksay et al., 2001; Major and Tank, 2004).
Oculomotor integrator neurons are able to maintain graded lev-
els of activity to represent different gaze positions, and much
theoretical work has investigated how these neurons are able to
maintain this continuum of persistent and steady levels of activity
(Cannon et al., 1983; Cannon and Robinson, 1985; Arnold and
Robinson, 1991; Seung, 1996; Seung et al., 2000; Koulakov et al.,
2002; Goldman et al., 2003). Preliminary observations using a
discrete and sequential presentation of evidence suggest that per-
sistent activity in LIP can represent graded levels of accumulated

evidence (Yang and Shadlen, 2004). It remains to be seen whether
similar mechanisms underlie integration in the variety of brain
regions that exhibit persistent activity, including those involved
in other sensory–motor transformations (Romo et al., 1999; Ma-
chens et al., 2005). The observation that LIP appears to reflect
integration to a bound may indicate it has different properties
than the unbounded oculomotor integrator.

Previous studies of LIP responses in other tasks have identified
signals that are not immediately linked to incoming sensory stim-
uli or to the execution of motor actions. Thus, LIP has been
implicated in a variety of higher functions, including spatial
working memory, motor planning, and the allocation of spatial
attention (Gnadt and Andersen, 1988; Mazzoni et al., 1996; Sny-
der et al., 1997; Gottlieb et al., 1998; Ciaramitaro et al., 2001; Paré
and Wurtz, 2001; Bisley and Goldberg, 2003; Zhang and Barash,
2004). Although our results do not immediately allow us to dis-
tinguish between competing accounts of LIP function, they do
shed light on the neural computations reflected in LIP. For ex-
ample, a common feature of LIP responses in many experimental
contexts is a persistent change in neural activity that is triggered
by a sensory cue but does not simply depend on the visual pres-
ence or absence of that cue. It is tempting to view the subsequent
persistent activity as a sign of neural integration. For example, in
simple memory guided saccades, an impulse of “evidence” about
the location of a target is integrated to a step response.

Of course, time integration alone cannot account for a wide
variety of functions ascribed to LIP, including the representation
of prior probability (Platt and Glimcher, 1999), reward expecta-
tion (Platt and Glimcher, 1999), subjective value (Dorris and
Glimcher, 2004; Sugrue et al., 2004), and elapsed time (Leon and
Shadlen, 2003; Janssen and Shadlen, 2005). However, even in
these contexts, temporal integration may facilitate the incorpo-
ration of these various types of information into neural compu-
tations that occur over a more flexible and extended time frame.
The temporal integration we have identified may underlie the
flexible combination or comparison of multiple pieces of sensory
evidence that occur at different times but that are all relevant to a
common decision or action.
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